Rules for Shear and Moment Diagrams

1. The slope of the shear diagram at any point is equal to (-) the load intensity at the same point.

$$
\frac{d V}{d x}=-w
$$

2. The change in shear between two points on the shear diagram is equal to (-) the area under the loading diagram between the same two points.

$$
\Delta V_{A B}=V_{B}-V_{A}=-\int_{x_{A}}^{x_{B}} w d x
$$

3. The slope of the moment diagram at any point is equal to the shear the same point

$$
\frac{d M}{d x}=V
$$

4. The change in moment between two points on the moment diagram is equal to the area under the shear diagram between the same two points.

$$
\Delta M_{A B}=M_{B}-M_{A}=\int_{x_{A}}^{x_{B}} V d x
$$

Always Go Left to Right

1. Downward external force moves the V diagram
downward.
2. Upward external force moves the V diagram upward.
3. Clockwise external moment moves the M diagram
upward.
4. Counter clockwise external moment moves the M
diagram downward.

Guidelines for the Shape of Shear and Moment Diagrams

1. Lines lead to Rectangles.	
2. Rectangles lead to Triangles.	
3. Triangles lead to Second-order Parabolas.	

