

- Center of gravity - weight is not indeardent of location - but as long as the
- Center of Mass. object is mall the effects of gravity independent of location and size
\Rightarrow Centroids \qquad geometric shape - Volume, area, length

thousandsotmiles -1
The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

Centroid of an Area

$$
\begin{aligned}
& \bar{x}=\frac{\int \tilde{x} d A}{\int d A} \\
& \bar{y}=\frac{\int \tilde{y} d A}{\sum d A} \\
& \bar{z}=\frac{\sum \bar{z} d A}{\sum d A}
\end{aligned}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad
\qquad

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beacon, Ph.D., P.E.

\qquad of

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

Shape		\%	4	Area
Tringular anta			$\frac{4}{3}$	$\frac{b h}{2}$
Quarte-ctircular ana		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicireniar area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 n}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
$\begin{aligned} & \text { Semielliptical } \\ & \text { area } \end{aligned}$		0	$\frac{4}{3 \pi}$	$\frac{\pi \mathrm{cob}}{2}$
Scmiparaholic ares		$\frac{3 n}{\mathrm{~s}}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$
Parabolic spandrel		$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{a k}{3}$
Ceneral spanded		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$
Cincular sector		$\frac{2 r \sin \alpha}{3 \alpha}$	0	αr^{2}

08	17	$\stackrel{p}{x}$		गxanjo.ay
4	$\frac{2}{x}$	${ }^{0}$		
\bar{c}	$\frac{4}{\sqrt{6}}$	$\frac{4}{\sqrt{6}}$		
	6	\underline{r}		deys

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

$$
\begin{aligned}
& \bar{x}=\frac{\sum A_{i} X_{i}}{\sum A_{i}}=\frac{200,880}{10,422}=19,27 \mathrm{~mm} \\
& \bar{y}=\frac{\sum A_{i} y_{i}}{\sum A_{i}}=\frac{277,020}{10,422}=26.58 \mathrm{~mm}
\end{aligned}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

