\qquad of \qquad Theorems at Pappus-Guldinus
solids and Surfaces of Re volution
Surface of revolution - a surface which con
be generated by rotating, a plane curve about

axis of revolution

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

Theorem 1. - The area of asurface of revolution is egsul to the product of the length of the generating curve and the distance traveled by the centroid of the gererating curve as the surface is gereratediadians Ifitionion complete

$$
A=\underbrace{\theta^{\bar{y}} L^{\text {distance }}}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

Theorem z - The volume of a body of revolution is equal to the product of the generating area and the distance traveled b_{y} the centroid of the area while the body is being generated.

$$
V=\theta \frac{r^{4}}{2} \frac{\text { radians }}{d r e a}
$$

Complete Z川revolution 2 dis tame traveled by the centroid

$$
V=z \pi \bar{y} \mathrm{~A}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

$$
\begin{aligned}
& y^{2}=13.5 \times \\
& y=1 \begin{array}{l}
13.5 \times \\
x=\frac{13}{13.5}
\end{array}
\end{aligned}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad of

$$
\begin{aligned}
& L=\int d L \\
& L=\int \sqrt{1+\left(\frac{d 4}{d x}\right)^{2}} d x \\
& L=\int_{0}^{24} \sqrt{1+\frac{13,5}{4 x}} d x \\
& L=31.40
\end{aligned}
$$

$$
\begin{aligned}
M_{x} & =\int_{24} y d L \\
M_{x} & =\int_{0}(\sqrt{13.5 x})\left(\sqrt{1+\frac{13.5}{4 x}} d x\right) \\
M_{x} & =335.65 \\
\bar{y} & =\frac{\sum \tilde{Y} d L}{\int d L}=\frac{M_{x}}{L}=\frac{335.65}{31.40} \\
& \bar{y}=10.69
\end{aligned}
$$

The material presented in this video or image was created by W. Lynn Beacon, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

$$
\begin{aligned}
& M_{y}=\int_{y} \tilde{x} d L \\
& M_{y}=\int_{0}^{4} x \sqrt{1+\left(\frac{13.5}{4 x}\right)} d x
\end{aligned}
$$

$$
M_{y}=324.35
$$

$$
\bar{x}=\frac{\int \hat{x} d L}{\int d L}=\frac{M_{y}}{L}=\frac{324.35}{31.40}
$$

$$
\bar{x}=10.33
$$

$$
\bar{y}=10.69
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beacon, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beacon, Ph.D., P.E.

