\qquad
\qquad
\qquad

Moment of Inertia

$$
r^{2}=x^{2}+y^{2}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad
\qquad

x^{\prime} and y^{\prime} controidal axes parallel to fundy x^{\prime} $I_{x}=\int_{\text {Area }}\left(y^{\prime}+d y\right)^{2} d A$

a centroidal axis
The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad

$$
\begin{array}{ll}
I_{y}=I_{y}^{\prime}+d x^{2} A & \text { in } f_{+}^{4} \\
I_{0}=\bar{J}_{c}+A d^{2} & m^{4} 4^{m m^{4}}
\end{array}
$$

Radius of Gyration

$$
\begin{array}{lll}
K_{x}=\sqrt{\frac{I_{x}}{A}} & \text { in } & I_{x}=k_{x}^{2} A \\
K_{y}=\sqrt{\frac{I_{y}}{A}} & \text { in } & I_{y}=K_{y}^{2} A \\
K_{0}=\sqrt{\frac{J_{0}}{A}} & \text { mm } & J_{0}=K_{0}^{2} A
\end{array}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Reason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.
\qquad Area Moment of Inertia

Engineering Proof

$$
\begin{aligned}
& I x=\overline{I x}+A d_{y}^{2} \\
& \frac{b h^{3}}{3}=\frac{b h^{3}}{12}+b h^{2}\left(\frac{h}{2}\right)^{2} \\
& \frac{b h^{3}}{3}=\frac{b h^{3}}{12}+\frac{b h^{3}}{4} \\
& \frac{b h^{3}}{3}=\frac{b h^{3}}{3} \\
& \text { Parallel Axis Theorem is valid } \\
& \text { at least for rectangles. }
\end{aligned}
$$

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Beason, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Beason, Ph.D., P.E.

The material presented in this video or image was created by W. Lynn Season, Ph.D., P.E. and is copyrighted 2014. No part or portion of this material may be copied, transmitted, or otherwise used without the express written consent of W. Lynn Reason, Ph.D., P.E.

